Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
ArXiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38313197

RESUMO

Machine learning has been increasingly used to obtain individualized neuroimaging signatures for disease diagnosis, prognosis, and response to treatment in neuropsychiatric and neurodegenerative disorders. Therefore, it has contributed to a better understanding of disease heterogeneity by identifying disease subtypes that present significant differences in various brain phenotypic measures. In this review, we first present a systematic literature overview of studies using machine learning and multimodal MRI to unravel disease heterogeneity in various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, schizophrenia, major depressive disorder, autism spectrum disorder, multiple sclerosis, as well as their potential in transdiagnostic settings. Subsequently, we summarize relevant machine learning methodologies and discuss an emerging paradigm which we call dimensional neuroimaging endophenotype (DNE). DNE dissects the neurobiological heterogeneity of neuropsychiatric and neurodegenerative disorders into a low-dimensional yet informative, quantitative brain phenotypic representation, serving as a robust intermediate phenotype (i.e., endophenotype) largely reflecting underlying genetics and etiology. Finally, we discuss the potential clinical implications of the current findings and envision future research avenues.

2.
Mol Psychiatry ; 28(5): 2008-2017, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147389

RESUMO

Using machine learning, we recently decomposed the neuroanatomical heterogeneity of established schizophrenia to discover two volumetric subgroups-a 'lower brain volume' subgroup (SG1) and an 'higher striatal volume' subgroup (SG2) with otherwise normal brain structure. In this study, we investigated whether the MRI signatures of these subgroups were also already present at the time of the first-episode of psychosis (FEP) and whether they were related to clinical presentation and clinical remission over 1-, 3-, and 5-years. We included 572 FEP and 424 healthy controls (HC) from 4 sites (Sao Paulo, Santander, London, Melbourne) of the PHENOM consortium. Our prior MRI subgrouping models (671 participants; USA, Germany, and China) were applied to both FEP and HC. Participants were assigned into 1 of 4 categories: subgroup 1 (SG1), subgroup 2 (SG2), no subgroup membership ('None'), and mixed SG1 + SG2 subgroups ('Mixed'). Voxel-wise analyses characterized SG1 and SG2 subgroups. Supervised machine learning analyses characterized baseline and remission signatures related to SG1 and SG2 membership. The two dominant patterns of 'lower brain volume' in SG1 and 'higher striatal volume' (with otherwise normal neuromorphology) in SG2 were identified already at the first episode of psychosis. SG1 had a significantly higher proportion of FEP (32%) vs. HC (19%) than SG2 (FEP, 21%; HC, 23%). Clinical multivariate signatures separated the SG1 and SG2 subgroups (balanced accuracy = 64%; p < 0.0001), with SG2 showing higher education but also greater positive psychosis symptoms at first presentation, and an association with symptom remission at 1-year, 5-year, and when timepoints were combined. Neuromorphological subtypes of schizophrenia are already evident at illness onset, separated by distinct clinical presentations, and differentially associated with subsequent remission. These results suggest that the subgroups may be underlying risk phenotypes that could be targeted in future treatment trials and are critical to consider when interpreting neuroimaging literature.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Brasil , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
3.
BMC Psychiatry ; 23(1): 59, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690972

RESUMO

BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Encéfalo , Neuroimagem , Imageamento por Ressonância Magnética/métodos , Inteligência Artificial
4.
Hum Brain Mapp ; 43(15): 4689-4698, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35790053

RESUMO

The brain-age-gap estimate (brainAGE) quantifies the difference between chronological age and age predicted by applying machine-learning models to neuroimaging data and is considered a biomarker of brain health. Understanding sex differences in brainAGE is a significant step toward precision medicine. Global and local brainAGE (G-brainAGE and L-brainAGE, respectively) were computed by applying machine learning algorithms to brain structural magnetic resonance imaging data from 1113 healthy young adults (54.45% females; age range: 22-37 years) participating in the Human Connectome Project. Sex differences were determined in G-brainAGE and L-brainAGE. Random forest regression was used to determine sex-specific associations between G-brainAGE and non-imaging measures pertaining to sociodemographic characteristics and mental, physical, and cognitive functions. L-brainAGE showed sex-specific differences; in females, compared to males, L-brainAGE was higher in the cerebellum and brainstem and lower in the prefrontal cortex and insula. Although sex differences in G-brainAGE were minimal, associations between G-brainAGE and non-imaging measures differed between sexes with the exception of poor sleep quality, which was common to both. While univariate relationships were small, the most important predictor of higher G-brainAGE was self-identification as non-white in males and systolic blood pressure in females. The results demonstrate the value of applying sex-specific analyses and machine learning methods to advance our understanding of sex-related differences in factors that influence the rate of brain aging and provide a foundation for targeted interventions.


Assuntos
Encéfalo , Caracteres Sexuais , Adulto , Envelhecimento/patologia , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
5.
Schizophr Bull Open ; 3(1): sgac040, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35903803

RESUMO

Objective: To examine the association between baseline alterations in grey matter volume (GMV) and clinical and functional outcomes in people at clinical high risk (CHR) for psychosis. Methods: 265 CHR individuals and 92 healthy controls were recruited as part of a prospective multi-center study. After a baseline assessment using magnetic resonance imaging (MRI), participants were followed for at least two years to determine clinical and functional outcomes, including transition to psychosis (according to the Comprehensive Assessment of an At Risk Mental State, CAARMS), level of functioning (according to the Global Assessment of Functioning), and symptomatic remission (according to the CAARMS). GMV was measured in selected cortical and subcortical regions of interest (ROI) based on previous studies (ie orbitofrontal gyrus, cingulate gyrus, gyrus rectus, inferior temporal gyrus, parahippocampal gyrus, striatum, and hippocampus). Using voxel-based morphometry, we analysed the relationship between GMV and clinical and functional outcomes. Results: Within the CHR sample, a poor functional outcome (GAF < 65) was associated with relatively lower GMV in the right striatum at baseline (P < .047 after Family Wise Error correction). There were no significant associations between baseline GMV and either subsequent remission or transition to psychosis. Conclusions: In CHR individuals, lower striatal GMV was associated with a poor level of overall functioning at follow-up. This finding was not related to effects of antipsychotic or antidepressant medication. The failure to replicate previous associations between GMV and later psychosis onset, despite studying a relatively large sample, is consistent with the findings of recent large-scale multi-center studies.

6.
Transl Psychiatry ; 12(1): 297, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882855

RESUMO

Individuals at Clinical High Risk for Psychosis (CHR-P) demonstrate heterogeneity in clinical profiles and outcome features. However, the extent of neuroanatomical heterogeneity in the CHR-P state is largely undetermined. We aimed to quantify the neuroanatomical heterogeneity in structural magnetic resonance imaging measures of cortical surface area (SA), cortical thickness (CT), subcortical volume (SV), and intracranial volume (ICV) in CHR-P individuals compared with healthy controls (HC), and in relation to subsequent transition to a first episode of psychosis. The ENIGMA CHR-P consortium applied a harmonised analysis to neuroimaging data across 29 international sites, including 1579 CHR-P individuals and 1243 HC, offering the largest pooled CHR-P neuroimaging dataset to date. Regional heterogeneity was indexed with the Variability Ratio (VR) and Coefficient of Variation (CV) ratio applied at the group level. Personalised estimates of heterogeneity of SA, CT and SV brain profiles were indexed with the novel Person-Based Similarity Index (PBSI), with two complementary applications. First, to assess the extent of within-diagnosis similarity or divergence of neuroanatomical profiles between individuals. Second, using a normative modelling approach, to assess the 'normativeness' of neuroanatomical profiles in individuals at CHR-P. CHR-P individuals demonstrated no greater regional heterogeneity after applying FDR corrections. However, PBSI scores indicated significantly greater neuroanatomical divergence in global SA, CT and SV profiles in CHR-P individuals compared with HC. Normative PBSI analysis identified 11 CHR-P individuals (0.70%) with marked deviation (>1.5 SD) in SA, 118 (7.47%) in CT and 161 (10.20%) in SV. Psychosis transition was not significantly associated with any measure of heterogeneity. Overall, our examination of neuroanatomical heterogeneity within the CHR-P state indicated greater divergence in neuroanatomical profiles at an individual level, irrespective of psychosis conversion. Further large-scale investigations are required of those who demonstrate marked deviation.


Assuntos
Transtornos Psicóticos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/complicações
7.
Schizophr Res Cogn ; 29: 100252, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35391789

RESUMO

Objective: Social dysfunction is a major feature of clinical-high-risk states for psychosis (CHR-P). Prior research has identified a neuroanatomical pattern associated with impaired social function outcome in CHR-P. The aim of the current study was to test whether social dysfunction in CHR-P is neurobiologically distinct or in a continuum with the lower end of the normal distribution of individual differences in social functioning. Methods: We used a machine learning classifier to test for the presence of a previously validated brain structural pattern associated with impaired social outcome in CHR-P (CHR-outcome-neurosignature) in the neuroimaging profiles of individuals from two non-clinical samples (total n = 1763) and examined its association with social function, psychopathology and cognition. Results: Although the CHR-outcome-neurosignature could be detected in a subset of the non-clinical samples, it was not associated was adverse social outcomes or higher psychopathology levels. However, participants whose neuroanatomical profiles were highly aligned with the CHR-outcome-neurosignature manifested subtle disadvantage in fluid (PFDR = 0.004) and crystallized intelligence (PFDR = 0.01), cognitive flexibility (PFDR = 0.02), inhibitory control (PFDR = 0.01), working memory (PFDR = 0.0005), and processing speed (PFDR = 0.04). Conclusions: We provide evidence of divergence in brain structural underpinnings of social dysfunction derived from a psychosis-risk enriched population when applied to non-clinical samples. This approach appears promising in identifying brain mechanisms bound to psychosis through comparisons of patient populations to non-clinical samples with the same neuroanatomical profiles.

8.
Schizophr Res Cogn ; 28: 100222, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35242602

RESUMO

Robust deficits in cognitive functioning are present in people with psychosis and are evident in the early stages of the disorder. Impairments in verbal memory and verbal fluency are reliably seen in individuals at clinical high-risk for psychosis (CHR) compared to healthy populations. As previous studies have shown a relationship between cognition and longer-term outcomes in schizophrenia, the aim of this paper was to explore whether verbal memory and verbal fluency performance predicted outcomes in a large CHR sample recruited as part of the EU-GEI High Risk Study. Participants included 316 CHR individuals, 90.8% of whom were not currently on antipsychotic medication, and 60 healthy controls. Verbal memory and verbal fluency performance were measured at baseline. At two-year follow-up, CHR individuals were assessed by three different outcome measures, those who did and did not (1) transition to psychosis, (2) experience burdening impairment or disabilities, or (3) remit clinically from CHR status. Individuals with CHR displayed significant verbal memory and verbal fluency deficits at baseline compared to healthy controls (Hedges' g effect size = 0.24 to 0.66). There were no significant differences in cognitive performance of those who did and did not transition to psychosis. However, impaired immediate verbal recall predicted both functional disability and non-remission from the CHR state. Results remained significant when analyses were restricted to only include antipsychotic-free CHR participants. These findings may inform the development of early interventions designed to improve cognitive deficits in the early stages of psychosis.

9.
Mol Psychiatry ; 27(2): 1167-1176, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34707236

RESUMO

Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Transtorno da Personalidade Esquizotípica , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Psicóticos/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem
10.
Neurosci Res ; 174: 19-24, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352294

RESUMO

Hippocampal integrity is highly susceptible to metabolic dysfunction, yet its mechanisms are not well defined. We studied 126 healthy individuals aged 23-61 years. Insulin resistance (IR) was quantified by measuring steady-state plasma glucose (SSPG) concentration during the insulin suppression test. Body mass index (BMI), adiposity, fasting insulin, glucose, leptin as well as structural neuroimaing with automatic hippocampal subfield segmentation were performed. Data analysis using unsupervised machine learning (k-means clustering) identified two subgroups reflecting a pattern of more pronounced hippocampal volume reduction being concurrently associated with greater adiposity and insulin resistance; the hippocampal volume reductions were uniform across subfields. Individuals in the most deviant subgroup were predominantly women (79 versus 42 %) with higher BMI [27.9 (2.5) versus 30.5 (4.6) kg/m2], IR (SSPG concentration, [156 (61) versus 123 (70) mg/dL] and leptinemia [21.7 (17.0) versus 44.5 (30.4) µg/L]. The use of person-based modeling in healthy individuals suggests that adiposity, insulin resistance and compromised structural hippocampal integrity behave as a composite phenotype; female sex emerged as risk factor for this phenotype.


Assuntos
Resistência à Insulina , Glicemia , Índice de Massa Corporal , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Insulina
12.
Transl Psychiatry ; 11(1): 579, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759289

RESUMO

Preclinical rodent models suggest that psychosis involves alterations in the activity and glutamatergic function in the hippocampus, driving dopamine activity through projections to the striatum. The extent to which this model applies to the onset of psychosis in clinical subjects is unclear. We assessed whether interactions between hippocampal glutamatergic function and activity/striatal connectivity are associated with adverse clinical outcomes in people at clinical high-risk (CHR) for psychosis. We measured functional Magnetic Resonance Imaging of hippocampal activation/connectivity, and 1H-Magnetic Resonance Spectroscopy of hippocampal glutamatergic metabolites in 75 CHR participants and 31 healthy volunteers. At follow-up, 12 CHR participants had transitioned to psychosis and 63 had not. Within the clinical high-risk cohort, at follow-up, 35 and 17 participants had a poor or a good functional outcome, respectively. The onset of psychosis (ppeakFWE = 0.003, t = 4.4, z = 4.19) and a poor functional outcome (ppeakFWE < 0.001, t = 5.52, z = 4.81 and ppeakFWE < 0.001, t = 5.25, z = 4.62) were associated with a negative correlation between the hippocampal activation and hippocampal Glx concentration at baseline. In addition, there was a negative association between hippocampal Glx concentration and hippocampo-striatal connectivity (ppeakFWE = 0.016, t = 3.73, z = 3.39, ppeakFWE = 0.014, t = 3.78, z = 3.42, ppeakFWE = 0.011, t = 4.45, z = 3.91, ppeakFWE = 0.003, t = 4.92, z = 4.23) in the total CHR sample, not seen in healthy volunteers. As predicted by preclinical models, adverse clinical outcomes in people at risk for psychosis are associated with altered interactions between hippocampal activity and glutamatergic function.


Assuntos
Transtornos Psicóticos , Corpo Estriado , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem
13.
Neuropsychopharmacology ; 46(8): 1468-1474, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33941857

RESUMO

Preclinical models propose that increased hippocampal activity drives subcortical dopaminergic dysfunction and leads to psychosis-like symptoms and behaviors. Here, we used multimodal neuroimaging to examine the relationship between hippocampal regional cerebral blood flow (rCBF) and striatal dopamine synthesis capacity in people at clinical high risk (CHR) for psychosis and investigated its association with subsequent clinical and functional outcomes. Ninety-five participants (67 CHR and 28 healthy controls) underwent arterial spin labeling MRI and 18F-DOPA PET imaging at baseline. CHR participants were followed up for a median of 15 months to determine functional outcomes with the global assessment of function (GAF) scale and clinical outcomes using the comprehensive assessment of at-risk mental states (CAARMS). CHR participants with poor functional outcomes (follow-up GAF < 65, n = 25) showed higher rCBF in the right hippocampus compared to CHRs with good functional outcomes (GAF ≥ 65, n = 25) (pfwe = 0.026). The relationship between rCBF in this right hippocampal region and striatal dopamine synthesis capacity was also significantly different between groups (pfwe = 0.035); the association was negative in CHR with poor outcomes (pfwe = 0.012), but non-significant in CHR with good outcomes. Furthermore, the correlation between right hippocampal rCBF and striatal dopamine function predicted a longitudinal increase in the severity of positive psychotic symptoms within the total CHR group (p = 0.041). There were no differences in rCBF, dopamine, or their associations in the total CHR group relative to controls. These findings indicate that altered interactions between the hippocampus and the subcortical dopamine system are implicated in the pathophysiology of adverse outcomes in the CHR state.


Assuntos
Dopamina , Transtornos Psicóticos , Corpo Estriado/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem
14.
Psychiatry Res Neuroimaging ; 310: 111270, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33714090

RESUMO

Brain-predicted age difference (brainPAD) has been used in schizophrenia to assess individual-level deviation in the biological age of the patients' brain (i.e., brain-age) from normative reference brain structural datasets. There is marked inter-study variation in brainPAD in schizophrenia which is commonly attributed to sample heterogeneity. However, the potential contribution of the different machine learning algorithms used for brain-age estimation has not been systematically evaluated. Here, we aimed to assess variation in brain-age estimated by six commonly used algorithms [ordinary least squares regression, ridge regression, least absolute shrinkage and selection operator regression, elastic-net regression, linear support vector regression, and relevance vector regression] when applied to the same brain structural features from the same sample. To assess reproducibility we used data from two publically available samples of healthy individuals (n = 1092 and n = 492) and two further samples, from the Icahn School of Medicine at Mount Sinai (ISMMS) and the Center of Biomedical Research Excellence (COBRE), comprising both patients with schizophrenia (n = 90 and n = 76) and healthy individuals (n = 200 and n = 87). Performance similarity across algorithms was compared within each sample using correlation analyses and hierarchical clustering. Across all samples ordinary least squares regression, the only algorithm without a penalty term, performed markedly worse. All other algorithms showed comparable performance but they still yielded variable brain-age estimates despite being applied to the same data. Although brainPAD was consistently higher in patients with schizophrenia, it varied by algorithm from 3.8 to 5.2 years in the ISMMS sample and from to 4.5 to 11.7 years in the COBRE sample. Algorithm choice introduces variations in brain-age and may confound inter-study comparisons when assessing brainPAD in schizophrenia.


Assuntos
Esquizofrenia , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Reprodutibilidade dos Testes , Esquizofrenia/diagnóstico por imagem
15.
Schizophr Bull ; 47(4): 1029-1038, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33547470

RESUMO

BACKGROUND: Early psychosis in first-episode psychosis (FEP) and clinical high-risk (CHR) individuals has been associated with alterations in mean regional measures of brain morphology. Examination of variability in brain morphology could assist in quantifying the degree of brain structural heterogeneity in clinical relative to healthy control (HC) samples. METHODS: Structural magnetic resonance imaging data were obtained from CHR (n = 71), FEP (n = 72), and HC individuals (n = 55). Regional brain variability in cortical thickness (CT), surface area (SA), and subcortical volume (SV) was assessed with the coefficient of variation (CV). Furthermore, the person-based similarity index (PBSI) was employed to quantify the similarity of CT, SA, and SV profile of each individual to others within the same diagnostic group. Normative modeling of the PBSI-CT, PBSI-SA, and PBSI-SV was used to identify CHR and FEP individuals whose scores deviated markedly from those of the healthy individuals. RESULTS: There was no effect of diagnosis on the CV for any regional measure (P > .38). CHR and FEP individuals differed significantly from the HC group in terms of PBSI-CT (P < .0001), PBSI-SA (P < .0001), and PBSI-SV (P = .01). In the clinical groups, normative modeling identified 32 (22%) individuals with deviant PBSI-CT, 12 (8.4%) with deviant PBSI-SA, and 21 (15%) with deviant PBSI-SV; differences of small effect size indicated that individuals with deviant PBSI scores had lower IQ and higher psychopathology. CONCLUSIONS: Examination of brain structural variability in early psychosis indicated heterogeneity at the level of individual profiles and encourages further large-scale examination to identify individuals that deviate markedly from normative reference data.


Assuntos
Encéfalo/patologia , Transtornos Psicóticos/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino
16.
Hum Brain Mapp ; 42(2): 439-451, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33048435

RESUMO

The ability to identify biomarkers of psychosis risk is essential in defining effective preventive measures to potentially circumvent the transition to psychosis. Using samples of people at clinical high risk for psychosis (CHR) and Healthy controls (HC) who were administered a task fMRI paradigm, we used a framework for labelling time windows of fMRI scans as 'integrated' FC networks to provide a granular representation of functional connectivity (FC). Periods of integration were defined using the 'cartographic profile' of time windows and k-means clustering, and sub-network discovery was carried out using Network Based Statistics (NBS). There were no network differences between CHR and HC groups. Within the CHR group, using integrated FC networks, we identified a sub-network negatively associated with longitudinal changes in the severity of psychotic symptoms. This sub-network comprised brain areas implicated in bottom-up sensory processing and in integration with motor control, suggesting it may be related to the demands of the fMRI task. These data suggest that extracting integrated FC networks may be useful in the investigation of biomarkers of psychosis risk.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Sintomas Prodrômicos , Transtornos Psicóticos/diagnóstico por imagem , Adolescente , Adulto , Encéfalo/fisiologia , Conectoma/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Rede Nervosa/fisiologia , Valor Preditivo dos Testes , Desempenho Psicomotor/fisiologia , Transtornos Psicóticos/psicologia , Fatores de Risco , Adulto Jovem
17.
Schizophr Bull ; 46(3): 670-679, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32227226

RESUMO

Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-midbrain circuit, leading to aberrant salience processing. Here, we used functional magnetic resonance imaging (fMRI) during novelty salience processing to investigate this model in people at clinical high risk (CHR) for psychosis according to their subsequent clinical outcomes. Seventy-six CHR participants as defined using the Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy controls (HC) were studied while performing a novelty salience fMRI task that engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR sample was then followed clinically for a mean of 59.7 months (~5 y), when clinical outcomes were assessed in terms of transition (CHR-T) or non-transition (CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and effective connectivity within a hippocampal-striatal-midbrain circuit were compared between groups. In CHR individuals compared to HC, hippocampal response to novel stimuli was significantly attenuated (P = .041 family-wise error corrected). Dynamic Causal Modelling revealed that stimulus novelty modulated effective connectivity from the hippocampus to the striatum, and from the midbrain to the hippocampus, significantly more in CHR participants than in HC. Conversely, stimulus novelty modulated connectivity from the midbrain to the striatum significantly less in CHR participants than in HC, and less in CHR participants who subsequently developed psychosis than in CHR individuals who did not become psychotic. Our findings are consistent with preclinical evidence implicating hippocampal-striatal-midbrain circuit dysfunction in altered salience processing and the onset of psychosis.


Assuntos
Atenção/fisiologia , Conectoma , Corpo Estriado/fisiopatologia , Hipocampo/fisiopatologia , Mesencéfalo/fisiopatologia , Rede Nervosa/fisiopatologia , Reconhecimento Visual de Modelos/fisiologia , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Corpo Estriado/diagnóstico por imagem , Feminino , Seguimentos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Mesencéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Sintomas Prodrômicos , Desempenho Psicomotor/fisiologia , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
18.
JAMA Psychiatry ; 77(2): 190-200, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722018

RESUMO

Importance: The development of adverse clinical outcomes in patients with psychosis has been associated with behavioral and neuroanatomical deficits related to emotion processing. However, the association between alterations in brain regions subserving emotion processing and clinical outcomes remains unclear. Objective: To examine the association between alterations in emotion processing and regional gray matter volumes in individuals at clinical high risk (CHR) for psychosis, and the association with subsequent clinical outcomes. Design, Setting, and Participants: This naturalistic case-control study with clinical follow-up at 12 months was conducted from July 1, 2010, to August 31, 2016, and collected data from 9 psychosis early detection centers (Amsterdam, Basel, Cologne, Copenhagen, London, Melbourne, Paris, The Hague, and Vienna). Participants (213 individuals at CHR and 52 healthy controls) were enrolled in the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI) project. Data were analyzed from October 1, 2018, to April 24, 2019. Main Measures and Outcomes: Emotion recognition was assessed with the Degraded Facial Affect Recognition Task. Three-Tesla magnetic resonance imaging scans were acquired from all participants, and gray matter volume was measured in regions of interest (medial prefrontal cortex, amygdala, hippocampus, and insula). Clinical outcomes at 12 months were evaluated for transition to psychosis using the Comprehensive Assessment of At-Risk Mental States criteria, and the level of overall functioning was measured through the Global Assessment of Functioning [GAF] scale. Results: A total of 213 individuals at CHR (105 women [49.3%]; mean [SD] age, 22.9 [4.7] years) and 52 healthy controls (25 women [48.1%]; mean [SD] age, 23.3 [4.0] years) were included in the study at baseline. At the follow-up within 2 years of baseline, 44 individuals at CHR (20.7%) had developed psychosis and 169 (79.3%) had not. Of the individuals at CHR reinterviewed with the GAF, 39 (30.0%) showed good overall functioning (GAF score, ≥65), whereas 91 (70.0%) had poor overall functioning (GAF score, <65). Within the CHR sample, better anger recognition at baseline was associated with worse functional outcome (odds ratio [OR], 0.88; 95% CI, 0.78-0.99; P = .03). In individuals at CHR with a good functional outcome, positive associations were found between anger recognition and hippocampal volume (ze = 3.91; familywise error [FWE] P = .02) and between fear recognition and medial prefrontal cortex volume (z = 3.60; FWE P = .02), compared with participants with a poor outcome. The onset of psychosis was not associated with baseline emotion recognition performance (neutral OR, 0.93; 95% CI, 0.79-1.09; P = .37; happy OR, 1.03; 95% CI, 0.84-1.25; P = .81; fear OR, 0.98; 95% CI, 0.85-1.13; P = .77; anger OR, 1.00; 95% CI, 0.89-1.12; P = .96). No difference was observed in the association between performance and regional gray matter volumes in individuals at CHR who developed or did not develop psychosis (FWE P < .05). Conclusions and Relevance: In this study, poor functional outcome in individuals at CHR was found to be associated with baseline abnormalities in recognizing negative emotion. This finding has potential implications for the stratification of individuals at CHR and suggests that interventions that target socioemotional processing may improve functional outcomes.


Assuntos
Encéfalo/patologia , Inteligência Emocional , Transtornos Psicóticos/psicologia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Emoções , Reconhecimento Facial , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Adulto Jovem
19.
Neuropsychopharmacology ; 45(4): 641-648, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31618752

RESUMO

Preclinical models of psychosis propose that hippocampal glutamatergic neuron hyperactivity drives increased striatal dopaminergic activity, which underlies the development of psychotic symptoms. The aim of this study was to examine the relationship between hippocampal glutamate and subcortical dopaminergic function in people at clinical high risk for psychosis, and to assess the association with the development of psychotic symptoms. 1H-MRS was used to measure hippocampal glutamate concentrations, and 18F-DOPA PET was used to measure dopamine synthesis capacity in 70 subjects (51 people at clinical high risk for psychosis and 19 healthy controls). Clinical assessments were undertaken at baseline and follow-up (median 15 months). Striatal dopamine synthesis capacity predicted the worsening of psychotic symptoms at follow-up (r = 0.35; p < 0.05), but not transition to a psychotic disorder (p = 0.22), and was not significantly related to hippocampal glutamate concentration (p = 0.13). There were no differences in either glutamate (p = 0.5) or dopamine (p = 0.5) measures in the total patient group relative to controls. Striatal dopamine synthesis capacity at presentation predicts the subsequent worsening of sub-clinical total and psychotic symptoms, consistent with a role for dopamine in the development of psychotic symptoms, but is not strongly linked to hippocampal glutamate concentrations.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal/métodos , Fatores de Risco , Resultado do Tratamento , Adulto Jovem
20.
Neurosci Biobehav Rev ; 107: 143-153, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31493414

RESUMO

22q11.2 deletion syndrome (DS) is considered to be the most robust genetic model of psychosis. In the last decade, there has been increased interest in the brain abnormalities associated with these genetic changes. Most imaging findings in this population come from small samples. This increases the risk of reporting spurious effects that reflect the idiosyncrasies of each study. Thus, the current work is aimed at identifying whether there are spatially consistent structural and functional brain abnormalities in individuals with 22q11.2 DS through (i) a comprehensive label-based systematic review and (ii) a coordinate-based meta-analysis of magnetic resonance imaging studies. The systematic review identified the frontal middle gyri, posterior cingulum, right cuneus and bilateral precuneus as the most affected regions. The meta-analysis revealed consistent abnormalities in the bilateral inferior parietal lobe, right precuneus, right superior temporal gyrus and posterior cingulate cortex. This study provides an important starting point for future research as it sheds light on possible genetically determined psychosis susceptibility regions.


Assuntos
Encéfalo/diagnóstico por imagem , Síndrome de DiGeorge/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...